If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-12t=-17
We move all terms to the left:
t^2-12t-(-17)=0
We add all the numbers together, and all the variables
t^2-12t+17=0
a = 1; b = -12; c = +17;
Δ = b2-4ac
Δ = -122-4·1·17
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{19}}{2*1}=\frac{12-2\sqrt{19}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{19}}{2*1}=\frac{12+2\sqrt{19}}{2} $
| 84/20=21/x | | 6.50+2t=22.50 | | 2x+1=x+13=3 | | 3p+1-2p=2+8 | | 3(x+4)=x−8 | | 180=11x-2+6x+7+90 | | 6x-9+4x-3=4x+10 | | 3p+4+5p=180 | | 4x+4.20=25 | | 4.9+10m=8.67 | | 2x-(6x-8)=4(3+5x) | | 2+x/6=-1/6 | | 3p+4=5p | | 3x-4+3x-17+69=180 | | 10(x+6)=350 | | D=7-0.5t | | 210=35-x | | 3(-2+t)=14-4(t-2) | | 19j+4j-17j+3j=45 | | 24+22x-3=27x+1 | | 10(x+6)=3(0 | | 27-x=575 | | 3(x+2)=3-6 | | 7x+8+33+90=180 | | 7w=3+w | | 3p+1−2p=2+8 | | 3+-1n=11+-2n+1 | | (3x+18)(6×-16)(43)=180 | | 3(x−1)+2=x+9 | | 432x=24 | | -.6t^2+18t-67.5=0 | | 7(x+9)+5=68 |